pub struct RosaPlus { /* private fields */ }Implementations§
Source§impl RosaPlus
impl RosaPlus
pub fn new(max_order: i64, use_eot: bool, eot_char: u8, seed: u64) -> Self
pub fn train_example(&mut self, s: &[u8])
pub fn build_lm(&mut self)
Sourcepub fn build_lm_no_finalize_endpos(&mut self)
pub fn build_lm_no_finalize_endpos(&mut self)
Build the language model without mutating SAM endpos.
This is useful when you want to reuse a trained SAM as a stable base state (e.g. universal-prior conditioning) and need cheap checkpoint/restore via truncation.
Note: entropy/cross-entropy estimation does not require endpos finalization.
Sourcepub fn build_lm_full_bytes_no_finalize_endpos(&mut self)
pub fn build_lm_full_bytes_no_finalize_endpos(&mut self)
Build an LM with a fixed byte alphabet of size 256.
This avoids alphabet growth issues and enables fast incremental updates.
Sourcepub fn train_example_tx(&mut self, tx: &mut RosaTx, s: &[u8])
pub fn train_example_tx(&mut self, tx: &mut RosaTx, s: &[u8])
Apply a training example and update LM counts incrementally (byte alphabet must be full 256).
Sourcepub fn train_sequence_tx(&mut self, tx: &mut RosaTx, s: &[u8])
pub fn train_sequence_tx(&mut self, tx: &mut RosaTx, s: &[u8])
Apply a sequential update without inserting a boundary (continuous stream).
Sourcepub fn rollback_tx(&mut self, tx: RosaTx)
pub fn rollback_tx(&mut self, tx: RosaTx)
Roll back a transaction, restoring the model to the exact state at begin_tx.
Sourcepub fn ensure_lm_built_no_finalize_endpos(&mut self)
pub fn ensure_lm_built_no_finalize_endpos(&mut self)
Ensure the LM is built (without mutating SAM endpos).
Sourcepub fn lm_alpha_n(&self) -> usize
pub fn lm_alpha_n(&self) -> usize
Current LM alphabet size (0 if LM not built).
pub fn estimated_size_bytes(&self) -> usize
pub fn shrink_aux_buffers(&mut self)
Sourcepub fn fork_from_sam(&self) -> Self
pub fn fork_from_sam(&self) -> Self
Create a new model that shares the same trained SAM state but resets LM-related buffers.
This is substantially cheaper than cloning the full RosaPlus (which includes LM counts,
node tables, and distribution buffers) and is safe for workflows that want to start from
a fixed base training text (e.g. a universal prior) and then add candidate-specific text.
Sourcepub fn checkpoint(&self) -> RosaCheckpoint
pub fn checkpoint(&self) -> RosaCheckpoint
A checkpoint that allows restoring the ROSA model back to a previous trained state by truncating append-only internal buffers.
Intended for workflows that repeatedly evaluate different continuations from the same base training text (e.g. universal-prior conditioned scoring).
Sourcepub fn restore(&mut self, ck: &RosaCheckpoint)
pub fn restore(&mut self, ck: &RosaCheckpoint)
Restore the model to a previously captured checkpoint.
This invalidates the LM; callers should rebuild it before scoring.
pub fn generate(&mut self, prompt: &[u8], steps: i32) -> Option<Vec<u8>>
Sourcepub fn get_distribution(&mut self, context: &[u8]) -> Vec<(u32, f64)>
pub fn get_distribution(&mut self, context: &[u8]) -> Vec<(u32, f64)>
Returns the probability distribution for the next symbol given a context. Output: Vec of (codepoint, probability) pairs, sorted by codepoint. Builds the LM if not already built.
Sourcepub fn predictive_entropy_rate(&mut self, data: &[u8]) -> f64
pub fn predictive_entropy_rate(&mut self, data: &[u8]) -> f64
Compute the predictive entropy rate (bits per symbol) of the given data.
Uses chunked prequential scoring (train on past chunks, score next chunk).
pub fn entropy_rate_cps(&mut self, cps: &[u32]) -> f64
pub fn cross_entropy(&self, data: &[u8]) -> f64
pub fn cross_entropy_cps(&self, data: &[u32]) -> f64
Sourcepub fn marginal_distribution(&self) -> Vec<(u32, f64)>
pub fn marginal_distribution(&self) -> Vec<(u32, f64)>
Returns the marginal (unigram) distribution over the training data. Output: Vec of (codepoint, probability) pairs, sorted by codepoint.
Sourcepub fn marginal_entropy(&self) -> f64
pub fn marginal_entropy(&self) -> f64
Compute the marginal entropy H(X) from the unigram distribution. Returns bits per symbol.