Expand description
§Axioms: Mathematical Property Verifiers
This module provides generic functions to verify mathematical properties that should hold for any correct implementation of information-theoretic measures.
Functions§
- verify_
chain_ rule - Verify chain rule: H(X,Y) = H(X) + H(Y|X).
- verify_
conditioning_ reduces_ entropy - Verify conditioning reduces entropy: H(X|Y) ≤ H(X).
- verify_
entropy_ bounds - Verify entropy is bounded by log2(alphabet_size). For bytes, max entropy is 8.0 bits/byte.
- verify_
identity - Verify that a distance function d(x,x) is close to 0 (allow for small overhead).
- verify_
mi_ nonnegative - Verify mutual information non-negativity: I(X;Y) ≥ 0.
- verify_
ncd_ bounds - Verify NCD range: 0 ≤ NCD ≤ 1+epsilon.
- verify_
non_ negativity - Verify non-negativity: d(x,y) ≥ 0.
- verify_
subadditivity - Verify subadditivity: H(X,Y) ≤ H(X) + H(Y).
- verify_
symmetry - Verify symmetry: d(x,y) ≈ d(y,x).
- verify_
triangle_ inequality - Verify triangle inequality: d(x,z) ≤ d(x,y) + d(y,z).